This is a quick reference list of cheat sheets for Tensorflow. See also Tensorflow website.
import tensorflow as tf # root package
import tensorflow_datasets as tfds # dataset representation and loading
model.compile(optimizer, loss, metrics) # compile necessary components for training and evaluation
model.fit(x_train, y_train, epoch, batch_size) # model training
model.evaluate(x_test, y_test) # model evaluation
a = tf.constant(5) + tf.constant(3) # tf.constant is an immutable tensor storing the fixed value
a.numpy() # This will return the value, which is 8
b = tf.Variable(10) # tf.Variable is a shared state for an entire execution time
b.assign(15) # this assign the new value to the variable
with tf.GradientTape() as tape: # record operations on variables for automatic differentiation
x =
tf.random_normal_initializer(mean, std) # tensor with independent N(mean,stf) entries
tf.random_uniform_initializer(min_val, max_val) # tensor with independent Uniform(min_val, max_val) entries
x = tf.[ones|zeros](*size) # tensor with all 1's [or 0's]
y = x.clone() # clone of x
with torch.no_grad(): # code wrap that stops autograd from tracking tensor history
requires_grad=True # arg, when set to True, tracks computation
# history for future derivative calculations
tf.shape # shape of the tensor
tf.rank # number of dimension of the tensors
tf.size # number of elements in the tensor?
x = tf.concat(tensor_seq, axis=0) # concatenates tensors along axis
y = tf.reshape(tensor, [new_shape]) # reshapes x into size (a,b,...)
y = tf.reshape(tensor, [(-1,a]) # reshapes x into size (b,a) for some b
y = x.permute(*dims) # permutes dimensions
y = tf.expand_dims(x) # tensor with added axis
y = tf.expand_dims(x, axis=2) # (a,b,c) tensor -> (a,b,1,c) tensor
tf.add(a, b), a + b # matrix addition
tf.multiply(a, b), a * b # matrix-vector multiplication
tf.matmul(a, b), a @ b # matrix multiplication
tf.transpose() # matrix transpose
gpus = tf.config.list_physical_devices('GPU') # check whether there is a GPU usage
if gpus:
tf.device() # manual device placement
# either "/CPU:0", "/GPU:0", or other qualified name
# of the second GPU of your machine
try:
tf.config.set_visible_devices(gpus[0], 'GPU') # Limiting GPU memory growth
tf.keras.Sequential # stack layers in a way that the computation
# will be performed sequentially
tf.keras.layers.Dense(m,n) # fully connected layer from
# m to n units
tf.keras.layers.ConvXd(m,n,s) # X dimensional conv layer from
# m to n channels where X⍷{1,2,3}
# and the kernel size is s
tf.keras.layers.MaxPoolXd(s) # X dimension pooling layer
# (notation as above)
tf.keras.layers.BatchNormalization # batch norm layer
tf.keras.layers.RNN/LSTM/GRU # recurrent layers
tf.keras.layers.Dropout(rate=0.5) # dropout layer for any dimensional input
tf.keras.layers.Embedding(input_dim, output_dim) # (tensor-wise) mapping from
# indices to embedding vectors
tf.keras.losses.X # where X is BinaryCrossentropy, BinaryFocalCrossentropy, CTC
# CategoricalCrossentropy, CategoricalFocalCrossentropy,
# CategoricalHinge, CosineSimilarity, Dice, Hinge, Huber
# KLDivergence, LogCosh, MeanAbsoluteError, MeanAbsolutePercentageError
# MeanSquaredError, MeanSquaredLogarithmicError, Poisson
# Reduction, SparseCategoricalCrossentropy, SquaredHinge, Tversky
tf.keras.activations.X # where X is ReLU, ReLU6, ELU, SELU, PReLU, LeakyReLU,
# RReLu, CELU, GELU, Threshold, Hardshrink, HardTanh,
# Sigmoid, LogSigmoid, Softplus, SoftShrink,
# Softsign, Tanh, TanhShrink, Softmin, Softmax,
# Softmax2d, LogSoftmax or AdaptiveSoftmaxWithLoss
opt = tf.keras.optimizer.x(model.parameters(), ...) # create optimizer
opt.step() # update weights
optim.X # where X is SGD, Adadelta, Adafactor,
# Adagrad, Adam, AdamW, Adamax, Ftrl, Lion,
# LossScaleOptimizer ,RMSprop or Rprop
callbacks = tf.keras.callbacks.LearningRateScheduler(scheduler) # create lr scheduler
model.fit(..., callbacks=[callback], ....) # update lr after optimizer updates weights
# using with fit(), evaluate(), and predict()
tf.keras.models.clone_model(...) # Clone a Functional or Sequential Model instance.
tf.keras.models.load_model(...) # Loads a model saved via model.save().
tf.keras.models.model_from_json(...) # Parses a JSON model configuration string and returns a model instance.
tf.keras.models.save_model(...) # Saves a model as a .keras file.